Course Code	19EE4701B	Year	IV	Semester	Ι	
Course Category	Program Elective IV	, Branch EEE Course Type			Theory	
Credits	3	L-T-P	3-0-0	Prerequisites		
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100	

HVDC TRANSMISSION SYSTEMS

	Course Outcomes
Upon su	uccessful completion of the course, the student will be able to
CO1	Identify HVDC power terminal equipment, classify type of HVDC connectivity
	and planning of HVDC system.(L2)
CO2	Understanding the choice of pulse conversion, control characteristic, firing angle
	control.
CO3	Interpret different types of converter control techniques
CO4	Able to calculate voltage and current harmonics, and design of filters and
	understand the reactive power necessity of conventional control.
CO5	Investigate Protection requirements, factors affecting power flow analysis and
	analyse real-time system.

C	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2		2			2					2	2	2
CO2	3	2	2										2	2
CO3							2						2	2
CO4	3	2	2				2						2	2
CO5	2	2	2				2						2	2

SYLLABUS				
Unit	Contents	Mapped		
No.		CO		
Ι	Basic Concepts of DC Transmission			
	Components of HVDC transmission systems: Types of HVDC Links -	0.01		
	Comparison of AC & DC transmission – Application of DC Transmission	COI		
	System – Planning and Modern trends in DC transmission, HVDC light.			
II	Analysis of HVDC Converters			
	Choice of Converter configuration – Analysis of Graetz – Characteristics of	CO2		
	6 Pulse – converter operation – Equivalent circuit – 12 Pulse converters	02		
	configurations –Small HVDC tapping.			
III	Converter and System Control			
	Principle of DC Link Control – Individual phase control, Equidistant firing			
	control Constant-current loop – Inverter extinction-angle control – Starting	CO3		
	and stopping of DC-link – Power Control.			

IV	Harmonic analysis, Filters – Characteristics and Non–Characteristics harmonics – Calculation of AC Harmonics —effects of harmonics – Calculation of voltage & current harmonics – Effect of Pulse number on harmonics. Design of AC filters Reactive Power requirement – Need of reactive power compensation in HVDC system, sources of reactive power.	CO4
V	 Faults ,Protection and case study of HVDC system Converter faults-over current and over voltage protection in converter station –Case study of any existing HVDC link in India, Case study of any existing HVDC link in the world. Power flow analysis in AC/DC systems Component models, solution of DC load flow, Parallel operation of HVDC/AC systems, Multi-terminal systems. 	C05

Learning Resources					
Text Books:					
1. HVDC Power Transmission Systems: Technology and System Interactions – by					
K.R.Padiyar, New Age International (P) Limited, and Publishers.					
2. Direct Current Transmission – by E.W.Kimbark, John Wiley & Sons					
Reference Books:					
1. HVDC Transmission – J. Arrillaga.					
2. Power Transmission by Direct Current – by E.Uhlmann, B.S.Publications.					
Learning Resources:					
https://nptel.ac.in/courses/108/104/108104013/					

https://www.brown.edu/Departments/Engineering/Courses/ENGN1931F/HVDC_Proven_Tech nologySiemens.pdf